1,883 research outputs found

    MSSM A-funnel and the Galactic Center Excess: Prospects for the LHC and Direct Detection Experiments

    Full text link
    The pseudoscalar resonance or "A-funnel" in the Minimal Supersymmetric Standard Model~(MSSM) is a widely studied framework for explaining dark matter that can yield interesting indirect detection and collider signals. The well-known Galactic Center excess (GCE) at GeV energies in the gamma ray spectrum, consistent with annihilation of a 40\lesssim 40 GeV dark matter particle, has more recently been shown to be compatible with significantly heavier masses following reanalysis of the background. In this paper, we explore the LHC and direct detection implications of interpreting the GCE in this extended mass window within the MSSM A-funnel framework. We find that compatibility with relic density, signal strength, collider constraints, and Higgs data can be simultaneously achieved with appropriate parameter choices. The compatible regions give very sharp predictions of 200-600 GeV CP-odd/even Higgs bosons at low tanβ\beta at the LHC and spin-independent cross sections 1011\approx 10^{-11} pb at direct detection experiments. Regardless of consistency with the GCE, this study serves as a useful template of the strong correlations between indirect, direct, and LHC signatures of the MSSM A-funnel region.Comment: 32 pages and 9 figure

    The variety generated by order algebras

    Get PDF
    Every ordered set can be considered as an algebra in a natural way. We investigate the variety generated by order algebras. We prove, among other things, that this variety is not finitely based and, although locally finite, it is not contained in any finitely generated variety; we describe the bottom of the lattice of its subvarieties

    The Paths of Quintessence

    Get PDF
    The structure of the dark energy equation of state phase plane holds important information on the nature of the physics. We explain the bounds of the freezing and thawing models of scalar field dark energy in terms of the tension between the steepness of the potential vs. the Hubble drag. Additionally, we extend the phase plane structure to modified gravity theories, examine trajectories of models with certain properties, and categorize regions in terms of scalar field hierarchical parameters, showing that dark energy is generically not a slow roll phenomenon.Comment: 12 pages, 7 figures; matches PRD versio

    Slow nucleation rates in Chain Inflation with QCD Axions or Monodromy

    Full text link
    The previous proposal (by two of us) of chain inflation with the QCD axion is shown to fail. The proposal involved a series of fast tunneling events, yet here it is shown that tunneling is too slow. We calculate the bubble nucleation rates for phase transitions in the thick wall limit, approximating the barrier by a triangle. A similar problem arises in realization of chain inflation in the string landscape that uses series of minima along the monodromy staircase around the conifold point. The basic problem is that the minima of the potential are too far apart to allow rapid enough tunneling in these two models. We entertain the possibility of overcoming this problem by modifying the gravity sector to a Brans-Dicke theory. However, one would need extremely small values for the Brans-Dicke parameter. Many successful alternatives exist, including other "axions" (with mass scales not set by QCD) or potentials with comparable heights and widths that do not suffer from the problem of slow tunneling and provide successful candidates for chain inflation.Comment: 6 pages, 1 figur

    Chain Inflation in the Landscape: "Bubble Bubble Toil and Trouble"

    Full text link
    In the model of Chain Inflation, a sequential chain of coupled scalar fields drives inflation. We consider a multidimensional potential with a large number of bowls, or local minima, separated by energy barriers: inflation takes place as the system tunnels from the highest energy bowl to another bowl of lower energy, and so on until it reaches the zero energy ground state. Such a scenario can be motivated by the many vacua in the stringy landscape, and our model can apply to other multidimensional potentials. The ''graceful exit'' problem of Old Inflation is resolved since reheating is easily achieved at each stage. Coupling between the fields is crucial to the scenario. The model is quite generic and succeeds for natural couplings and parameters. Chain inflation succeeds for a wide variety of energy scales -- for potentials ranging from 10MeV scale inflation to 101610^{16} GeV scale inflation.Comment: 31 pages, 3 figures, one reference adde

    Fluid Interpretation of Cardassian Expansion

    Get PDF
    A fluid interpretation of Cardassian expansion is developed. Here, the Friedmann equation takes the form H2=g(ρM)H^2 = g(\rho_M) where ρM\rho_M contains only matter and radiation (no vacuum). The function g(\rhom) returns to the usual 8\pi\rhom/(3 m_{pl}^2) during the early history of the universe, but takes a different form that drives an accelerated expansion after a redshift z1z \sim 1. One possible interpretation of this function (and of the right hand side of Einstein's equations) is that it describes a fluid with total energy density \rho_{tot} = {3 m_{pl}^2 \over 8 \pi} g(\rhom) = \rhom + \rho_K containing not only matter density (mass times number density) but also interaction terms ρK\rho_K. These interaction terms give rise to an effective negative pressure which drives cosmological acceleration. These interactions may be due to interacting dark matter, e.g. with a fifth force between particles Frα1F \sim r^{\alpha -1}. Such interactions may be intrinsically four dimensional or may result from higher dimensional physics. A fully relativistic fluid model is developed here, with conservation of energy, momentum, and particle number. A modified Poisson's equation is derived. A study of fluctuations in the early universe is presented, although a fully relativistic treatment of the perturbations including gauge choice is as yet incomplete.Comment: 25 pages, 1 figure. Replaced with published version. Title changed in journa

    Cascade events at IceCube + DeepCore as a definitive constraint on the dark matter interpretation of the PAMELA and Fermi anomalies

    Get PDF
    Dark matter decaying or annihilating into μ^+μ^- or τ^+τ^- has been proposed as an explanation for the e^± anomalies reported by PAMELA and Fermi. Recent analyses show that IceCube, supplemented by DeepCore, will be able to significantly constrain the parameter space of decays to μ^+μ^-, and rule out decays to τ^+τ^- and annihilations to μ^+μ^- in less than five years of running. These analyses rely on measuring tracklike events in IceCube + DeepCore from down-going ν_μ. In this paper we show that by instead measuring cascade events, which are induced by all neutrino flavors, IceCube + DeepCore can rule out decays to μ^+μ^- in only three years of running, and rule out decays to τ^+τ^- and annihilation to μ^+μ^- in only one year of running. These constraints are highly robust to the choice of dark matter halo profile and independent of dark matter-nucleon crosssection

    Correspondence from E.B. Lovejoy, June 28, 1862

    Get PDF
    Correspondence from E.B. Lovejoy regarding absent soldiers from Androscoggin Countyhttps://digitalmaine.com/absent_soldiers/1002/thumbnail.jp
    corecore